
Stoner ferromagnetic phase of graphene in the presence of an in-plane magnetic field

A. Qaiumzadeh1,2 and R. Asgari1,*
1School of Physics, Institute for Research in Fundamental Sciences, IPM, 19395-5531 Tehran, Iran

2Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45195-1159, Iran
�Received 23 February 2009; revised manuscript received 30 June 2009; published 28 July 2009�

We study the effects of an in-plane magnetic field on the ground-state properties of both gapless and gapped
graphene sheets within random-phase approximation. The critical magnetic field which leads to a fully spin
polarized phase increases by decreasing the carrier density at zero gap indicating that no spontaneous magnetic
phase transition occurs. However, at large energy-gap values it decreases by decreasing the density. We find a
continuous quantum magnetic phase transition �Stoner phase� for Dirac fermions in a doped graphene sheet.
Novel in-plane magnetic field dependence of the charge and spin susceptibilities are uncovered.
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I. INTRODUCTION

Graphene is an atomically thin two-dimensional �2D�
electron system composed of carbon atoms on a honeycomb
lattice. Several experimental groups have recently1 intro-
duced techniques which enabled isolation and study of sys-
tems with one or a small number of graphene layers. The
interesting physics of graphene systems stems from the fact
that its envelope function of low-energy Schrödinger equa-
tion is equivalent to the massless 2D Dirac equation. In the
case of graphene the spinor structure in the Dirac equation
refers to sublattices of its honeycomb structure and its
Brillouin-zone valleys, instead of the spin degrees of free-
dom and the electron-positron picture. Graphene, therefore,
presents a new type of many-body problem in which the
noninteracting low-energy quasiparticle dynamic2 is effec-

tively described by a 2D massless Dirac Hamiltonian Ĥ0
=�vF�� ·k, with two chiral eigenvalues, ��k where �k
=�vF�k�, with vF�106 m /sec, is the Fermi velocity of car-
riers. The chirality plays an important role in the novel elec-
tronic properties of graphene.

The strength of interaction effects in an ordinary two-
dimensional electron gas �2DEG� increases with decreasing
the carrier density. At low densities, the effective velocity is
suppressed, the charge compressibility changes sign from
positive to negative, and the spin susceptibility is strongly
enhanced. In the Dirac-type electrons in graphene, it has
been shown3,4 that the velocity is enhanced rather than sup-
pressed, and that the compressibility, always remains posi-
tive, and the spin susceptibility is suppressed. These qualita-
tive differences are due to the exchange interactions between
electrons near the Fermi surface and electrons in the negative
energy sea. The interband excitations are closely analogous
to the virtual particle-antiparticle excitations of a truly rela-
tivistic electron gas.

Conventional 2DEG has been a fertile source of surpris-
ing new physics for more than four decades. In recent years,
because of the important and novel physical properties found
in both theoretical and technological applications, there has
been a large amount of theoretical and experimental studies
on the effects of parallel magnetic field B in a 2DEG. A great
deal of activity was spawned in the last decade to understand
the apparent metal-insulator transition observed in Si-

MOSFET and GaAs-based structures.5 Although the basic
mechanism and the existence of a quantum phase transition
is still a matter of ongoing debate, experiments have amassed
a wealth of data on the transport properties of the 2D elec-
tron systems in the metallic state. Zhang and Das Sarma6

investigated the ground-state properties of the 2DEG in the
presence of an in-plane magnetic field B using random-phase
approximation �RPA�. They showed that for small Wigner-
Seitz density parameter rs= ��naB

2�−1/2 in which aB is the
Bohr radius in the medium of interest and in the absence of
the magnetic field the system prefers to be in a paramagnetic
state. As B increases the ground-state energy is minimized at
a special nonzero spin polarization denoted by ��. The degree
of spin polarization is defined as �= �n↑−n↓� / �n↑+n↓�, and
n↑�↓� is electron density with spin up �down�. When B in-
creases to a critical value Bc in which the system is fully spin
polarized, there exist two �� values, smaller and equal to one,
where the total energy is minimized. They have shown that
the first-order phase transition from paramagnetic to ferro-
magnetic takes place. Importantly, beyond the critical field
the energy minimum is at ��=1 and the system is fully spin
polarized.

Subaşı and Tanatar,7 on the other hand, studied the same
system by using a parameterized expression for the correla-
tion energy provided by the quantum Monte Carlo
simulations.8 They found that the 2DEG in the presence of
an in-plane magnetic field B�B�Bc� undergoes a first-order
phase transition to the ferromagnetic state �Bloch ferromag-
netism� in the density regions associated with 0	rs	7 and
20	rs	25, while for 7	rs	20 their results predicted a
continuous phase transition �Stoner ferromagnetism�.

In an electron-gas system the physical observable quanti-
ties most directly related to the energy are the compressibil-
ity which measures the stiffness of the system against
changes in the density of electrons and the spin susceptibili-
ties. In bulk electronic systems, the spin susceptibility can
usually be extracted successfully from total magnetic suscep-
tibility measurements. This is, however, likely to be chal-
lenging in the case of single-layer graphene. In the 2DEG, on
the other hand, information about the spin susceptibility can
often be extracted from weak-field magnetotransport experi-
ments using a tilted magnetic field to distinguish spin and
orbital responses.
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Recently, Hwang and Das Sarma9 have shown that the
in-plane magnetic field induces graphene magnetoresistance
which is negative for intrinsic gapless graphene while for
extrinsic gapless graphene, magnetoresistance is a positive
value at fields lower than the critical magnetic field and
negative above the critical magnetic field. The effect of in-
plane magnetic field on microwave magnetotransport10 in
doped graphene is an open problem.

The purpose of this paper is to study the effects of in-
plane magnetic field on disorder-free doped graphene at zero
temperature. These effects are very important and have some
novel and unusual properties in comparison to the conven-
tional 2DEG. We have revisited the problem of the com-
pressibility and spin susceptibilities in the presence of an
in-plane magnetic field and find that the charge compressibil-
ity exhibits a crossover between paramagnetic and ferromag-
netic phases depending on the carrier density and the gap
values. Before describing the details of the theory and pre-
senting our results, we point out that the most novel elec-
tronic properties of graphene which will be discussed here
are based on interband interaction and exchange interaction
between electrons near the Fermi surface in graphene sheets.

The content of the paper is as follows. In Sec. II we dis-
cuss about our theoretical model which contains the Zeeman
energy. Our numerical results are given in Sec. III. Eventu-
ally, Sec. IV contains the summary and conclusions.

II. THEORETICAL MODEL

We consider a doped graphene sheet with a peculiar gap
opening due to sublattice symmetry breaking where 2D mas-
sive Dirac fermions at low energy is described by noninter-

acting Hamiltonian14 Ĥ0=�vF�� ·k+mvF
2�3. There are two ei-

genvalues �Ek, where Ek=��k
2 +
2 is the spectrum of

particle with 
=mvF
2 is the gap energy. The results of gapless

graphene can be obtained by setting 
=0. It should be noted
that the in-plane magnetic field couples not only to the spin

degrees of freedom in a quasi-two-dimensional electron gas,
which leads to the spin polarization of the carriers, but also
to the orbital motion of the carriers6,7,11–13 due to the finite
quantum-well thickness. However, because of the absence of
thickness in graphene, the applied B couples only with spin
of the carriers and leads to the spin polarization of them. Due
to the Zeeman spin-splitting effect we have a shift in the
Fermi wave vector for up and down spins kF�=kF�1+���1/2,
where kF=�4�n /gsgv is the unpolarized Fermi wave vector,
n is the 2D electron density and gs=2 and gv=2 are the spin
and valley degeneracies, respectively. The coupling constant
in graphene sheets is density independent and given by �gr
=gsgve2 /��vF, where � is the average dielectric constant of
the substrate and air. For a typical substrate �e.g., SiC or
SiO2� the dielectric constant is between 1 and 2.

The total energy per particle in the presence of an in-plane
magnetic field B as a function of the density n, the spin
polarization �, the gap energy 
, and the coupling constant
�gr takes the following form:

�tot�n,�,
,B� = �kin�n,�,
� + �x�n,�,
� + �c�n,�,
�

+ �Z��,B� . �1�

where

�kin�n,�,
� =
gv

6�n�2vF
2 ���2vF

2kF
2�1 + �� + 
2�3/2

+ ��2vF
2kF

2�1 − �� + 
2�3/2 − 2
3	 �2�

is the kinetic energy per particle and

�x�n,�,
� = −
1

4�n

 d2q

�2��2Vq

0



d���↑
�0��q,i�,�,
�

+ �↓
�0��q,i�,�,
�� , �3�

is the exchange energy. ��0��q , i� ,� ,
� is the zero-
temperature noninteracting polarization function for doped
graphene14 which is given by

��
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� = −
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 +
�q

2

2 � 
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where ��=��2v2kF�
2 +
2 and Vq=2�e2 /�q is the 2D Cou-

lomb interaction. Moreover, the correlation energy per
particle3 in RPA is given by

�c�n,�,
� = − �x�n,�,
� +
1

2�n

 d2q

�2��2

0



d�

�ln�1 − Vq�↑
�0��q,i�,�,
� + �↓

�0��q,i�,�,
�
2

�� , �5�

and finally the Zeeman energy per particle is �Z�� ,B�=
−�B�B, where �B is the Bohr magneton. In the above equa-
tion we have used the fluctuation-dissipation theorem.15 In
order to make the exchange and correlation energies finite,
we might subtract3,14 the vacuum polarization-energy contri-
butions from the exchange and correlation energies
��x�c��kF�0�=�x�c��kF�−�x�c��kF=0�. Due to the conserved
number of states in the Brillouin zone, we do need an ultra-
violet momentum cutoff kc which is approximated by �kc

2

= �2��2 /A0, where A0 is the area of the unit cell in the hon-
eycomb lattice. The dimensionless parameter � is defined as
kc /kF.

The total energy per particle for a gapless graphene in the
noninteracting electron scheme is given by

�tot
0 �n,�,B� =

gv�FkF
2

6�n
��1 + ��3/2 + �1 − ��3/2� − �B�B , �6�

where �F=�vFkF is the Fermi energy of the gapless
graphene. The minimum of the noninteracting energy as a
function of spin polarization occurs at �0

�=2�BB��F
2

−�B
2B2�1/2 /�F

2. Setting ��=1 allows us to determine the criti-
cal magnetic field Bc0�n� corresponding to the fully spin po-
larize the system. The critical magnetic field for the nonin-
teracting system is Bc0=�F /�2�B.

To calculate ���B� for the interacting case, the total energy
in Eq. �1� needs to be minimized with respect to � and then
the critical magnetic field Bc can be found for the fully spin
polarized case. At a finite magnetic field the energy mini-
mum occurs at nonzero polarization 0	��	1. Beyond the
critical field the energy minimum is at ��=1 and the system
is fully polarized. In general, the critical magnetic field takes
the form

Bc

Bc0
=

�2

2�F
���2�F

2 + 
2�1/2 − 
� + 2� ���xc

��
�

�=1
� . �7�

III. NUMERICAL RESULTS

We now turn to the presentation of our numerical results.
We consider �gr=1 which is an appropriate value for
graphene placed on the SiC substrates and we choose the gap
values between 0 and 100 meV which is observed in typical
experiments.

In Fig. 1 we plot the exchange �in the inset: correlation�
energy of graphene as a function of � for a range of 
 values.
The exchange energy is positive because our regularization
procedure implicitly selects the chemical potential of un-
doped graphene as the zero of energy. It would be noted that

���x /�� ��=1�0 at small 
 and it changes the sign at large
gap values. The slope of exchange and correlation energies
with respect to � around �=1 have opposite signs. Note that
both ��x and ���c� have the same density dependence and
they both increase with decreasing density.3 These arguments
will be useful in describing the critical magnetic field given
by Eq. �7�.

In Fig. 2, we plot the calculated critical field Bc which
polarizes the quasiparticles for the interacting case in the
units of the critical field for noninteracting Dirac massless
fermions Bc0, as a function of inverse square root of the
density. The critical field increases by decreasing the density
of carriers for massless case due to the impact of exchange
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FIG. 1. �Color online�. Exchange energy as a function of degree
of spin polarization, � for various gap energies. In the inset: the
correlation energy as a function of � for various gap energies.
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energy �see Eq. �7��. This particular feature is in contrast to
the 2DEG in which the reduction in carrier density leads to
the decline of the critical field.7,11 This distinguished behav-
ior is a direct result of the chirality in the massless Dirac
fermions and interband interaction features. The critical
fields, on the other hand, have a nonmonotonic behavior at
small gap values. It increases by decreasing the density till it
reaches to the maximum value and then decreases at very
low-density values because of the competition between the
exchange and correlation energy contributions, as shown in
Fig. 1. We have found that Bc vanishes at about n
�108 cm−2 for 
=100 meV. This is a similar behavior to
the conventional 2DEG where system goes to the fully po-
larized state spontaneously at a special density, rs�25.5 cal-
culated within Monte Carlo simulations8 or rs�5.5 base on
RPA calculation.11

Moreover, at low-density region associated with large �,
we found no indication for a spontaneous magnetic phase
transition for small 
 even at large coupling constants. These
results are in contrast to the results reported in Ref. 16 where
the exchange term, the Hartree-Fock theory was only used.
In that work, Peres et al. found that exchange interactions
between Dirac fermions can stabilize a ferromagnetic phase
at low doping when the coupling is sufficiently large. We
have not found any evidence for this instability using RPA
calculations. The RPA is a minimal dielectric scheme that
allows quantitative predictions beyond the Hartree-Fock
theory. In the present case of a two-dimensional electron gas
on a graphene sheet, the Hartree-Fock exchange contribution
to the ground-state energy is positive. In our work we clearly
show that the RPA correlation energy is negative.

Furthermore, it is shown17 that the kinetic-energy en-
hancement of the spin-polarization phase nearly cancels the
exchange enhancement and the correlation energy plays a
dominant residual role. Therefore, the inclusion of the corre-
lation energy suppresses the spin-polarized phase found in
the exchange only calculation in gapless graphene. In exam-

ining the tendency of the system to develop magnetic order
in the presence of electron-electron interactions it is thus
crucially important to include both exchange and correlation
contributions.

In Fig. 3 we plot the calculated total ground-state energy,
��tot�kF�=�tot�kF�−�tot�kF=0� in units of the Fermi energy
for massless Dirac fermions �F as a function of the spin
polarization parameter �. The results are shown for various
magnetic fields at �a�
=0 and �b�100 meV. In both cases the
minimum energy occurs at paramagnetic state, namely, ��

=0 in the absence of magnetic field but as B increases the
minimum energy shifts to nonzero spin polarization and ��

increases continuously to the ferromagnetic phase ���=1� at
B=Bc. For B�Bc the system remains in the ferromagnetic
phase. This indicates a continuous-phase transition �Stoner
type� from paramagnetic-to-ferromagnetic phase in the pres-
ence of magnetic field for each density value whereas a first-
order phase transition for whole of the density range is pre-
dicted for 2DEG.11

In Fig. 4 we plot the magnetization ���B� as a function of
the applied magnetic field B.7,11 Clearly there is no longer
jump in the magnetization at B=Bc due to a continuous-
phase transition in graphene. In the conventional 2DEG, the
transition to the ferromagnetic state near the critical mag-
netic field value happens with a discrete jump in the polar-
ization indicating a first-order transition to the fully polarized
state. The magnetization �� is a semilinear function of the
magnetic field versus the large gap values.

A quantity of interest which can be accessed experimen-
tally is the nonlinear spin susceptibility of the system defined
as � /�0�B=0�=

�F

2�B
��� /�B, where �0 is the Pauli susceptibil-

ity. The spin susceptibility decreases nonlinearly by increas-
ing the magnetic field at small 
 values, showing that the
polarizability of the system decreases. This feature should be
verified by magnetoresistance measurements through the po-
larization field Bc.

Another important thermodynamic quantity is the com-
pressibility, �, which yields interesting features when

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6 0.8 1

δε
to

t(∆
,ζ

,n
)/

ε F

ζ

(a)

B=0
B=0.1Bc0
B=0.5Bc0
B=Bc0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 0.2 0.4 0.6 0.8 1

δε
to

t(∆
,ζ

,n
)/

ε F

ζ

(b)

B=0
B=0.1Bc0
B=0.5Bc0
B=Bc0

(b)(a)

FIG. 3. �Color online�. Total energy as a function of spin polarization for various magnetic fields for �a�: 
=0 and �b�: 100 meV at
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graphene is subjected to an in-plane magnetic field. The ex-
change energy is positive while the correlation energy is
negative. This has important implications on the thermody-
namic properties. The compressibility can be calculated from
its definition, �−1=n2�2�n��tot� /�n2. In Fig. 5 we have shown
the inverse of compressibility of gapless graphene as a func-
tion of the inverse square root of density for unpolarized and
fully polarized states. �0 /� increases with decreasing density
at small gap energy. This behavior is in contrast to the con-
ventional 2DEG. The compressibility of noninteracting gap-
less graphene is �0=2 / �n�F�. The exchange energy tends to
reduce the compressibility while correlations tend to enhance
it. We found that at the given Bc��=5�, which is associated
with a special density, �0 /� starts from �=1 and slowly tends

to the paramagnetic results of the gapless one. This special
behavior is a consequence of the fact that Bc��	5� is
smaller than Bc��=5� as shown in Fig. 2. However at
gapped graphene, say 
=100, we choose a value of the criti-
cal magnetic field Bc��=400� and observed that �0 /�
switches to its fully polarized system value with a kinklike
behavior as shown in the Fig. 6. This feature is a conse-
quence of the fact that Bc��	400� is larger than Bc��
=400�. This suggests that in the compressibility measure-
ments the effect of the polarizing magnetic field could be
discerned. The physical reason for having two different be-
haviors at small and large � is that the critical magnetic field
behaves in different ways at small and large energy-gap val-
ues. Note that at very large gap energy, �0 /� decreases by
increasing n−1/2. The nonmonotonic behaviors of �0 /� with
respect to 
 are due to the comparison between the exchange
energy and the correlation energy as a function of gap values.

IV. CONCLUSION

In summary, we study the effects of in-plane magnetic
field on the ground-state properties of both gapless and
gapped graphene where the conduction band is partially oc-
cupied. The present work is demonstrating the increasing
behavior of the critical field in which the system becomes
fully spin polarized by decreasing the density for gapless
graphene. Accordingly, it means that there is no longer a
spontaneous paramagnetic-to-ferromagnetic phase transition
for gapless graphene at zero magnetic field. The critical mag-
netic field decreases by decreasing the density at large gap
values. Quite interestingly, we find a continuous quantum
magnetic phase transition for the whole range of the density
at zero temperature. The novel in-plane magnetic field de-
pendence of charge and spin susceptibilities is obtained. The
inverse compressibility as a function of inverse density ex-
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hibits a crossover from the fully polarized state to the para-
magnetic case for gapless graphene, which should be identi-
fiable experimentally.

It is worth noticing that the aforementioned results are in
contrast to those results calculated for a conventional 2DEG
due to the effect of interband interaction. We suggest these
results should be verified by experiments.

It is recently shown that ripples in graphene induced a
gauge field. It is convenient to emphasize that the study of

the effects of parallel magnetic field on physical quantities in
graphene sheets at the presence of such an induced gauge
field is an interesting problem which might be taken into
account.
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